This experiment was conducted for a period of three months between May and July, 2000, to empirically prove the effectiveness of the Online Business Letter Corpus KWIC Concordancer (BLC Concordancer) as a writing tool for non-native learners/users of English for business purposes. The hypothesis was that use of the BLC Concordance in the writing process will significantly reduce the number of linguistic surface errors and thereby improve the overall quality of the messages they write. A total of 40 subjects consisting of Japanese business people were divided into two groups, Control Group and Experiment Group. They were given the same letter-writing assignments, Tests 1 through 7, and errors they made in two most problematic areas for non-native writers of English, i.e., articles and prepositions, were counted and compared. In writing the assignments (except Test 1), the Experiment Group was specifically instructed to make full use of the BLC Concordance, while the Control Group wrote all the assignments without using it. It was found that the average numbers of errors the Experiment Group made in Tests 2 through 7 were significantly lower than those made by the Control Group, while no significant difference was observed in the average numbers of errors the two groups made in Test 1. This result can only be attributed to the main controlling factor of the experiment, i.e., the use of the BLC Concordancer, thus confirming the initial hypothesis that the BLC Concordancer -- and the data-driven writing/learning methodology associated with it -- is in fact very effective in reducing some of the most prominent and recurring errors found in most "interlanguage" written messages.
Introduction
For most non-native users of EBP, or English for Business Purposes, writing remains to be a major headache. It is more so today as e-mail has now become the primary means of international business communication, increasing not only the number of messages they have to write on the job simply because they receive more, but also the need to write under pressure of time (Someya, 1999a). As an instructor and researcher in the area of EBP, therefore, this author feels ever more obliged to do whatever he can to help his students overcome the problems they have. This paper reports the results of an experiment this author conducted in his attempt to search for a better and more effective way of form-focused instruction to ensure grammatical accuracy, rather than fluency, of the business messages written by his students consisting mainly of Japanese adult users of EBP.

1. Purpose of the Experiment
The purpose of the experiment was to empirically prove the effectiveness of the Online Business Letter Corpus KWIC Concordancer (hereinafter, "BLC Concordancer"), which this author has developed and subsequently installed on his Website (http://www.kamakuranet.ne.jp/~someya) hoping that it will be of help to his students, or anyone for that matter, in writing business messages in English. More details about the BLC Concordancer will be discussed in Section 8 of this paper.

2. Working Hypothesis
In conducting the experiment, the author had the following hypothesis whose validity he wanted to prove: that the BLC Concordancer is an effective tool for writing for non-native learners/users of EBP in improving the overall quality of the messages they write in English in that, if used properly, it will significantly reduce the number of linguistic surface errors which are otherwise prominent in and characteristics of most "interlanguage" written messages.

3. Basic Design of the Experiment
To test the above hypothesis, the subjects of the experiment (See Section 4 for more details) were divided into two groups of equal size, Experiment Group and Control Group. Both groups were given the same letter-writing assignments from Tests 1 to 7. The former group wrote the assignments making full use of the BLC Concordancer (except Test 1), whereas the latter group did not use the Concordancer in writing the assignments. All the assignments submitted by the subjects in both groups were checked for errors directly related to articles and prepositions, and their numbers compared to see whether there are any significant differences in the numbers of errors they made.
The initial assumption was that the subjects in the Experiment Group would make less errors in all the assignments (i.e., Tests 2 through 7) consistently than those in the Control Group. If this was found to be the case, the reason could only be attributed to the use of the BLC Concordancer by this group, which is the main controlling factor of the experiment as shown in the following table which summarizes the major conditions of the experiment for the Control and Experiment Groups.

<table>
<thead>
<tr>
<th>No. of subjects</th>
<th>Control Group</th>
<th>Experiment Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of sample selection</td>
<td>Selected randomly from among the participants of a business writing correspondence course</td>
<td>Volunteers recruited from among the participants of business writing seminars</td>
</tr>
<tr>
<td>Knowledge of the experiment</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Use of BLC Concordancer</td>
<td>No</td>
<td>Yes (except Test 1)</td>
</tr>
<tr>
<td>Assignments</td>
<td>Same assignments (Tests 1 through 7)</td>
<td></td>
</tr>
<tr>
<td>Method of sending and receiving assignments</td>
<td>Surface mail (partly, fax)</td>
<td>e-mail</td>
</tr>
<tr>
<td>Types of feedback</td>
<td>Full (non-selective) and explicit error correction</td>
<td>Selective feedback, with no overt error correction</td>
</tr>
<tr>
<td>Types of errors counted for comparison</td>
<td>Articles and Prepositions</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of the major conditions of experiment between the Control and Experiment Groups

An additional factor that might influence the result of experiment is the difference in the types of feedback. A number of previous research, however, indicate that the difference in the types of instructor’s feedback does not make any significant influence on the overall quality of students’ writing (Robb et al. 1986; Hattori et al. 1990; Kanatani et al. 1993; Shizuka 1996; Oikawa and Takayama 2000). These research clearly show that it's not what kind of feedback or how much of it we give to our students, but how our feedback is accepted, attended to and acted upon by the students that makes real difference.

In the current experiment, therefore, a particular attempt was made that the instructor’s feedback given to the Experiment Group was always accompanied by, or comprised of, specific instructions for follow-up activities involving the use of the BLC Concordancer (See the Sample
Feedback in Section 5), so that the subjects are given the opportunity to redress the problems at hand by themselves rather than being deprived of that opportunity by being given the right “answers” by the instructor in the form of overt error correction. This means that this factor is in effect subsumed into the main controlling factor of the experiment, i.e., the use of the Concordancer. Such being the case, we will not consider the effect, if any at all, of the difference in the types of feedback.

4. Participants
A total of 40 Japanese business people in their 20s to 40s took part in the experiment. They were divided into two groups, Experiment Group and Control Group, each consisting of 20 people with a male-female ratio of about 50-50.

The subjects in the former group consisted of people who participated in Business writing seminars conducted by this author between January and June of the current year. They volunteered to take part in the experiment upon my invitation and, as such, were fully aware of the purpose of the experiment. They were also given a brief explanation of the BLC Concordance by this author in the writing seminars they attended.

The subjects in the latter group were chosen at random from among the participants of the Writing Marathon -- a correspondence course in English Business writing run jointly by ALC Inc., a publisher in Tokyo, and this author since 1986. They knew nothing about the experiment, nor did they use the BLC Concordancer in writing their assignments.

5. Duration of the Experiment, Data Collection and Types of Feedback
The experiment was conducted for about three months between May and July, 2000. During this period, the subjects in the Control Group submitted seven letter-writing assignments (Tests 1 through 7) as part of the requirements of the correspondence course mentioned above. These letters were checked by two native-speaking staff members of the course under the supervision of this author and, after being added a full (i.e., non-selective) and explicit error correction in accordance with the usual procedure of the course, were sent back to respective subjects by surface mail. These letters were copied and filed for records before they were sent back.

The Experiment Group was also given the same letter-writing assignments as those given to the Control Group. The subjects in this group, however, were specifically instructed to make full use of the BLC Concordancer in writing the assignments except Test 1. They were also instructed to read an online introductory guide to the BLC Concordancer available on the Concordancer Website to get acquainted with the Concordancer before they start writing the assignments (See Appendix 4 for a printout of the toppage of BLC Concordancer Website). All the seven assignments were given via the Internet on the Data-Driven Writing Project Homepage (See Appendix 1 for a printout of the Project Homepage, and Appendix 2 for a printout of the Online
Entry Form). The subjects were asked to submit their answers by email on a weekly basis, or one assignment per week, directly to this author, using the online JavaScript form-mail provided on the Project Homepage for each of the seven assignments.

All the assignments submitted by the subjects in the Experiment Group were checked by this author and returned by email after being added a selective feedback with no explicit error correction (as opposed to the full and explicit error correction given to the Control Group). In doing so, a particular attempt was made to encourage the subjects to refer to the BLC Concordancer in finding the right "solutions" to the problems in question, as shown in the following sample of instructor's feedback:

... I will \[1\] discuss about > the matter with Mr. Doe so that I can \[2\] make decision > by the end of this month.

[1] Check BLC as to the verb pattern of "discuss."

6. Assignments

As stated above, a total of seven letter-writing assignments were given to the subjects in both groups. Each assignment was given in a case study method where a hypothetical case requiring a written message to deal with the given problem or situation is described and the students are asked to write the message the way they think is appropriate in each specific case. The topic of each assignment is as follows (all are business-related assignments except for Test 7):

Test 1 Request for free material
Test 2 Letter of inquiry, asking several specific questions.
Test 3 Request for payment, a first reminder.
Test 4 Thank-you letter, after a visit to the office of an overseas business associate.
Test 5 A letter turning down a request, with a suggestion for an alternative.
Test 6 An interoffice memorandum expediting due reports.
Test 7 A letter to the staff of the DDW Project, writing about each participant's impressions, comments or suggestions about the Project.

7. Types of Errors Counted

In this experiment, it was decided to deal only with two types of errors: those directly related to articles and prepositions. This decision was made not only because it is neither realistic to deal with all the possible errors nor it necessary to do so in view of the purpose of the current experiment, but also because these are the two major areas in which the average Japanese EBP learners/users find most difficult to deal with (Someya 1999a). It should also be mentioned that,
in this author's view, many, if not most, of the errors related to these two grammatical categories can be effectively avoided by reference to the BLC Concordancer.

Method of Error Count: In general, the number of errors in a given text is directly related to the length of that text. The longer the text, the more errors there usually are. In counting the numbers of errors in the current experiment, therefore, all the numbers (row counts) were standardized to percentage figures, or the number of errors per 100 words, so that a meaningful comparison between texts of different lengths can be made.

8. **The BLC Concordancer**

Before discussing the results of the experiment, let us now take a brief look at the BLC Concordancer. Simply stated, a concordancer is a data-retrieval computer program designed to search for instances of a specified search string through text data and display the result in the KWIC (KeyWord In Context) format. As commercial software, there are currently several excellent concordancers including TXTANA and WordSmith Tools. Free online services are also provided by such institutions as the Virtual Language Center of Hong Kong Polytechnic University (Web Concordancer = http://vlc.polyu.edu.hk/scripts/concordance/WWWConcappE.htm) and the Linguistic Data Consortium at University of Pennsylvania (LDC Online = http://www.ldc.upenn.edu).

The BLC Concordancer used in the current experiment has been developed by this author with reference to these existing systems. It is written as a CGI (Common Gateway Interface) Perl script and has a one-million-word Business Letter Corpus, or BLC, as its main database. As far as the author is aware, it is the first online concordancer equipped with an EBP (English for Business Purposes) corpus of a substantial size. The BLC Concordancer is currently installed on this author's personal website with no restriction for access.

a) **User Interface**

In designing the Concordancer, the author tried to make the user interface as simple and straight-forward as possible, so that students and businesspeople who have never used a similar system or have a very little prior computing experience can use it with no particular difficulty. Shown on the next page is the main user interface of the Concordancer with five operation "boxes."
In the **Search String** box, users are prompted to enter a search string (e.g. a morpheme, word or phrase). Then, in the second box, they choose **Search Type** from among four options: Equal to, Start with, End with, and Contain. The "Equal to" option will search for exact matches only; that is, if your search string is "appreciate," this option will retrieve all the instances of "appreciate" but not those of its inflected forms. The "Start with" option will search for words that contain a specified search string as a prefix. For instance, a search string "ex" under this option will match all the instances that start with this particular prefix, such as "example, exclude, exit, examination," and so on. The "End with" option will search for words that contain a specified search string as a suffix (e.g. "ing" under this option matches all the instances ending with "ing," such as "going, doing, seeing," etc.).

Finally, the "Contain" option will search for words that contain a specified search string of any
type regardless of where it occurs within each word. Thus, a search string “ask” under this option will match all the instances of “ask, asks, asked, asking,” but it also matches “task, mask, basket,” and so on.

In the 3rd box, users specify **Line Width**, which defines the number of characters to both the right and left of the search word to be displayed in the output. The default setting is 40, but this may be changed freely according to users’ needs. In general, the larger the number, the more contextual information you get in the output. However, for both technical and copyright reasons, the current system is designed so as not to display concordance lines beyond the sentence boundaries within which the search string is located.

In the fourth box, users choose **Search Corpus** from among the following three options:
1) *Business Letter Corpus* (BLC2000), containing a total of 1,020,060 word tokens of American and British samples of business letters, 2) *POS tagged version of the BLC* (BLC2000_POS), and 3) *Personal Letter Corpus* (PLC2000_AmE), containing a total of 113,522 word tokens of American samples of non-business related personal letters.

In the last box, users choose **Sort Type** from among three options: Right, Left and Unsort. The "Right" option, which is the default setting, will sort the output at the first word to the right of the search string, while the "Left" option will sort the output at the first word to the left of the search string. The "Unsort" option will simply return concordance lines in order of their occurrence in the corpus without any sorting.

b) Response Time and Display

However simple the user interface and operation may be, real usefulness of a concordancer as a data-retrieval system depends largely on the size and quality of database. The current system, of course, is not perfect, yet it is still one of the best available at the moment. Another important consideration is the speed of response. In this regard, too, the current system is considered to be at a satisfactory level. It usually returns a search result within five to ten seconds on average after clicking on the SUBMIT button, provided that the server is not too crowded at the time of operation.

As to the number of concordance lines returned and displayed, there is no prior set limit. If there were 1000 hits for a particular search string, for instance, all of the 1000 instances would be returned as per the line-width and sorting specifications set by the user. The user, if necessary, can copy all or part of the concordance lines and paste them onto a new file of a text editor for further processing of the data. The image on the next paged shows a sample output of the BLC Concordancer with the regular expression “ (for|in) detail|ls)” as the search string.
9. Results and Discussion

Tables 2 and 3 (pp. 15-16) summarize the numbers of errors made by each of the 20 subjects in both Control and Experiment Groups for Tests 1 through 7. These two tables are converted into 3-D graphics as in Figure 1-1 for the Control Group and Figure 1-2 for the Experiment Group respectively.

These two graphics clearly show that errors in the Experiment Group are consistently fewer than in the Control Group, except for Test 1.
Figure 2 compares the mean numbers of errors between the two groups for Tests 1 through 7. Before interpreting these results, Fisher’s F test was conducted for Test 1 to see whether the two groups, the Control and Experiment Groups, can be said to belong to the same mother population. The test yielded an F value of 1.5424 (df=19, 19), indicating that the difference between the observed sample variances are not statistically significant at $\alpha = 0.05$ and that the two sets of samples are most likely to have been derived from the same mother population.

Having thus confirmed the statistical homogeneity of the two sample populations, the t-test was then conducted for all the seven assignments. As shown in Table 1, the observed differences in the mean error scores between the two groups are found statistically significant at $p < 0.05$ for Tests 2 through 7 consistently, confirming our initial hypothesis that the use of the BLC Concordancer was actually quite effective in reducing the number of surface errors -- as far as the two target areas are concerned.

It is also noteworthy that the “full and explicit error correction” given to the Control Group did not make any notable contribution to reducing the number of errors in their writing throughout the seven assignments (Mean=3.43, STD=0.23). This is in confirmation of the finding of previous research that instructor’s feedback, however detailed and accurate it may be, does not make in itself any significant influence on the overall quality of students’ writing.
Figures 3-1 and 3-2 show that, of the two grammatical categories that are most problematic for average Japanese EBP writers, errors in prepositions seem to be more easily avoided by using the BLC Concordancer than errors in articles.
The reason for this may be that, while use of articles is largely dependant upon the semantics, rather than the syntax, of a given sentence, the choice of a particular preposition from among other possible alternatives in a given context can be determined more or less locally and syntactically -- often within a few words to both the right and left of the prepositional slot in question. And, as such, users can simply submit a query to the BLC Concordancer, containing either the main verb (or VP) or noun (or NP) as a search string to find out the preposition that goes with it. The following are some of the typical errors found in the assignments submitted by the subjects in the Control Group.

- your participation fee of the party is still outstanding [T3, CG-S3]
- my visit in Toronto [T4, CG-S12]
- information of Canadian business [T4, CG-S6]
- invitation of career guidance seminar [T5, CG-S14]
- kindly explained about the meanings of . . . for detail [T7, CG-S18]
- please contact with me if you . . . [T7, CG-S1]

Had they used the BLC Concordancer in writing and reviewing their assignments, they would have been able not only to avoid making these simple errors, but also learn, for instance, that the combination "fee+ for" is usually followed by an NP-EVENT as in “fee for this service” and the
combination "fee of" is followed by a MONEY-AMOUNT as in "fee of $40" and so on and so forth. This is basically what the subjects in the Experiment Group have done in doing the assignments under the condition that they make full use of the BLC Concordancer. As we have already seen, the positive effect of this data-driven, self-learning tool is clearly manifested in the much fewer average numbers of errors they made in their writing from Tests 2 through 7 than those of their counterparts in the Control Group.

10. Conclusion and Final Remarks

The experiment thus confirmed the hypothesis stated at the outset that the BLC Concordancer is an effective tool for non-native writers of EBP in significantly reducing the number of linguistic surface errors and thereby improving the overall quality of the messages they write in English. The average numbers of errors the Experiment Group made in articles and prepositions in Tests 2 through 7 were significantly lower than those made by the Control Group. The reason for this difference can only be attributed to the use of the BLC Concordancer.

Notwithstanding the above conclusion, however, it is clear that the BLC Concordancer and the data-driven language learning methodology associated with it are no panacea for all the problems our students have. As Granger and Tribble (1998:199) warn, DDL as an emerging methodology "raises as many questions as it might appear to answer."

First, success with the concordance-based approach of DDL seems to be strongly associated with several specific parameters -- such as student's cognitive level, learning style, current levels of linguistic proficiency and computer literacy. This means that the method may only be effective for certain types of students. With regard to the level of linguistic proficiency, it seems clear that the DDL approach is particularly suited for learners at intermediate to advanced levels, although theoretically the approach can also be adopted by beginners or near-beginners.

Second, as discussed in Section 9, the data-driven approach to writing based on KWIC concordance data is only effective for certain types of linguistic forms whose use is more or less determined locally -- either within the phrase or the clause in question. Others such as those related to textual and discoursal aspects of writing necessarily require a wider context, and thus will not easily lend themselves to analysis in KWIC format. It is, therefore, important to view DDL as complementary to other methods of language learning and teaching, rather than a replacement for them.

Despite these and other limitations and shortcomings, DDL has a major advantage over traditional language learning and teaching styles in that it helps learners cultivate and strengthen their inductive skills by favoring "learning by discovery" (Tribble and Jones, 1990:12). If successfully applied, it has the potential of turning otherwise monotonous language learning into an exciting scientific endeavor in which "learners can become active participants in this voyage of discovery into patterns of the language -- a voyage which may induce increased motivation for foreign language learning, including some of its hitherto least popular components, such as grammar" (Granger and Tribble 1998: 209).
<table>
<thead>
<tr>
<th>No. of Errors in Article Usage</th>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
<th>Test4</th>
<th>Test5</th>
<th>Test6</th>
<th>Test7</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Words Per 100 Words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Errors Per 100 Words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per 100 Words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Errors in Preposition Usage</th>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
<th>Test4</th>
<th>Test5</th>
<th>Test6</th>
<th>Test7</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Words Per 100 Words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Errors Per 100 Words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per 100 Words</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Numbers of Errors in Control Group (without BLC Concordance)
| Sample Number | Test 1 Words | Test 1 Errors | Test 1 Per 100 | Test 2 Words | Test 2 Errors | Test 2 Per 100 | Test 3 Words | Test 3 Errors | Test 3 Per 100 | Test 4 Words | Test 4 Errors | Test 4 Per 100 | Test 5 Words | Test 5 Errors | Test 5 Per 100 | Test 6 Words | Test 6 Errors | Test 6 Per 100 | Test 7 Words | Test 7 Errors | Test 7 Per 100 | TOTAL Words | TOTAL Errors | TOTAL Per 100 |
|---------------|-------------|----------------|----------------|-------------|----------------|----------------|-------------|----------------|----------------|-------------|----------------|----------------|-------------|----------------|----------------|-------------|----------------|----------------|-------------|----------------|----------------|----------------|----------------|
| 1 | 107 | 2 | 1.87 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 0 | 0.00 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| 2 | 120 | 2 | 1.42 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| 3 | 140 | 2 | 1.36 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| 4 | 160 | 2 | 1.20 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| 5 | 180 | 2 | 1.04 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| 6 | 200 | 2 | 0.88 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| 7 | 220 | 2 | 0.72 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| 8 | 240 | 2 | 0.56 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| 9 | 260 | 2 | 0.40 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| 10 | 280 | 2 | 0.24 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| 11 | 300 | 2 | 0.08 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| Mean | 300 | 2 | 0.77 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
| STD | 12.63 | 2 | 0.86 | 130 | 1 | 0.77 | 165 | 0 | 0.00 | 132 | 1 | 0.08 | 165 | 1 | 0.06 | 117 | 1 | 0.85 | 167 | 2 | 1.26 | 352 | 7 | 2.01 |
Endnotes

1. Test 1 was used to measure statistical homogeneity of the two groups (i.e., to see whether they belong to the same mother population); therefore, the requirement to use the Concordancer was not applied to Test 1.

2. The Project actually started with twice the number of people, but about a half of the subjects in the Experiment Group either did not complete all the seven assignments before the final date of the Project or gave up sending the assignments mainly due to technical problems (users of Internet Explorer Ver. 3 or under were not able to use the Javascript form mail used in this Project to send the assignments).

3. All the case description and test instructions were given in Japanese. A printout of the online version of Test 1 is attached hereto for reference (See Appendix 3).

4. For the Control Group, the letter is addressed to the staff of the correspondence course in which the subjects are enrolled.

5. This corpus was compiled as part of an MA thesis written by this author in 1999. For more details about the BLC, see Someya (1999c).

7. The system also accepts "regular expressions," so that users can undertake more complicated search operations depending on their needs. For those who are not familiar with regular expressions, a separate webpage entitled "Regular Expressions for Beginners" (in both Japanese and English) has been added to the Concordancer Homepage

8. In addition to the three corpora, five other corpora have now been added to the list for reference purposes. See the Concordancer Homepage for details.

Appendices

1. A printout of the DDW Project Homepage
2. A printout of the Online Entry Form.
3. A printout of the online version of the first assignment, Test 1.

Bibliography

Granger, S. and Tribble, C. (1998) "Learner corpus data in the foreign language classroom:

Oikawa and Takayama (2000) 及川賢・高山芳樹「自由英作文における error feedback と revision の効果」『関東甲信越英語教育学会研究紀要』第14号, pp. 43-54.

Someya, Y. (1999b) 染谷泰正「特別記事：データに基づく英語学習のすすめ」『英語をモノにするためのカタログ』アルク, pp. 217-220

